

Tevatron Operations

Ron Moore
DOE Tevatron Operations Review
SC-1 Breakout
March 21, 2006

Breakout Session Agenda

- Tevatron Overview Ron Moore
- Beam-Beam Effects + Orbit Helix Yuri Alexahin
- Simulations, Chromatic Compensation, New Working Points - Alex Valishev

Tevatron Overview (this presentation)

- Operations Overview
- Instrumentation
- TEL Progress
- Separator Progress
- Shutdown Tasks

Operations Overview

Since the last long shutdown ended (12/04)...

- 287 HEP stores begun (give/take a few...not counting ones lost before HEP)
- Record initial lumi improved from 103 to 172 (10) 30 cm $^{-2}$ s $^{-1}$
- Record weekly integrated luminosity up to 24.4 pb⁻¹
- Delivered over 850 pb⁻¹ of data
 - > Both CDF & DO have recorded > 1.4 fb-1 of data each in Run II

- = 28 cm β^* and Recycler-only phars boost Tevatron luminosity
- Periods of outstanding reliability + 3 recent failures

Peak Luminosity

Integrated Luminosity per Week

Integrated Luminosity

Tevatron Improvements

- Installing/commissioning new BPM electronics completed
- 28 cm β* + optics correction
 - Lattice measurements exploited new BPM electronics
 - > Tested at end of stores; implemented in September
- Pbar tune stabilization during HEP
 - Keep pbar tunes > 7/12 as beam-beam tune shift decreases
 - Helps maintain pbar lifetime
- Orbit stabilization during HEP
 - Compensate for "fast" low-beta quad motion
 - > Eliminate halo spikes @ CDF & DO, maintain lifetime
- Longitudinal instabilities solved
 - > Problem at last year's review fixed damper hardware

Comfort Plot @ 150 GeV

Bunch-by-Bunch Proton Losses

Inefficiencies @ 150 GeV

Proton Inefficiency @ 150 GeV vs Pbar Intensity

Ramp

- $150 \rightarrow 980 \text{ GeV}$ in 86 sec; max ramp rate is 16 GeV/s
- 8 RF cavities 4 proton + 4 pbar
 - > Phased such that one beam sees no net voltage from other cavities
 - > RF voltage is constant; bucket area minimum early in ramp
- Bunch lengths shrink by $(980/150)^{1/4} \approx 1.6$
 - \triangleright e.g., protons: 2.8 ns \rightarrow 1.7 ns
- Final pbar cogging done after reaching flattop
- Longitudinal damper (protons) off for acceleration, on after cog
- Beam separation decreases > 600 GeV
 - Can't run separators hard enough
 - Separation decreases faster than beam size

Up the Ramp

Ramp Inefficiencies

类

Squeeze

- Shrink the beams from 1.6 m \rightarrow 28 cm β * at CDF and DO
- Take ≈125 sec to step through 14 different lattices
- Also need to switch polarity of B17 horz separator
 - > Put pbars on "right" side for CDF pots for collisions
 - Injection helix → Collision helix
 - > Horizontal separation minimum at that time
 - > Several years ago, up to 25% pbars lost at that step
 - > Yuri Alexahin developed new separator scheme to fix, but it's still difficult to transition
- 28 cm β * implemented in Sep 05 by Alex Valishev and Yuri
- Moved proton tunes > 7/12 (pbars already there)
 - > Store-to-store pbar variations moved proton tunes around
 - > Gain bit tune space, modest non-luminous lifetime improvement

Through the Squeeze

Squeeze Inefficiencies

BB-induced Proton Losses

- Moving the proton tunes above 7/12 produced no big lifetime improvement due to store-to-store variation in tunes
- However, the slant down with increasing pbar intensity became less

Halo Removal, a.k.a. Scraping

Luminosity Formula

$$L = \frac{fN_p N_a}{2\pi(\varepsilon_p + \varepsilon_a)\beta^*} H(\frac{\sigma_z}{\beta^*})$$

Increasing the Luminosity

- New 28 cm β* lattice
- Recycler-only pbars provide larger N_a + smaller ε_a

Effective Emittance

$$\varepsilon_{eff} = \frac{fN_p N_a H(\frac{\sigma_z}{\beta^*})}{4\pi \beta^* L}$$

Specific Luminosity

$$L_{\textit{specific}} = \frac{L}{N_p N_a}$$

Initial Luminosities

Beam Intensities @ HEP

How Much Bang for the Buck?

β* Measurements by DO

华

Pbar Tune Feedback

- Pbar tunes shifted up ~0.020 due to head-on and long-range beam-beam tune shifts
- Pbar tunes can decrease by ~0.01 over store as emittances grow
 - > Reduced lifetime while crossing 7/12 resonance
- Maintain pbar lifetime by keeping tunes > 7/12
 - > Monitor 1.7 GHz Schottky tune measurements
 - > Post an alarm when tunes getting close to 7/12
 - > MCR operators push tunes up with pbar-only tune mults
- Mechanism already in place for protons, too

Tunes without Compensation

Pbar Tune Feedback

Magnet Motion / Orbit Stabilization

TEL - Tevatron Electron Lens

- Continuously removes DC beam in abort gap
 - Beam in gap when abort kickers fire not kicked into dump
 - > Can cause quenches and high doses in CDF
 - Periodic pulsing of e-beam drives beam toward tune resonances
- Additional status + Beam-Beam Compensation later...

Low Luminosity Stores

- 2 low lumi stores requested for CDF & DO diffractive physics programs (forward pots)
- Low intensity 36×36 , $28 \text{ cm } \beta^*$: L = 0.7 (10)³⁰ cm⁻² s⁻¹
- Normal intensity 1x1, 1.6 m β^* : L = 0.5 (10)³⁰ cm⁻² s⁻¹
- Completed successfully
 - > Diffractive physics program effectively complete
 - > CDF removed pots to install longer collimator @ A48

Reliability by Week in 2005+2006

Store Termination by Category

Tevatron Quenches/Month

Component Failures

- Nov 21 B17 spool package
 - > B11 horz separator spark caused multi-house quench
 - Kautzky valve on spool failed closed
- Jan 24 Insulating vacuum leak in A44
 - > Operator error left SQDO (skew coupling) supply off
 - > Tunes landed badly after initiating collisions, large losses
 - > A44 cell not hit with losses, quenched with adjacent cells
 - > Faulty O-ring installation years ago finally failed
- Feb 22 F47-2 dipole
 - > Spare abort input pulled abort spuriously
 - > Kautzky valve on dipole failed closed

Kautzky Valve Poppets

- During quench, pressure forces valve open, allows He to escape
- Poppet can break off, remain in closed position
- 1 similar failure in 20 years, now 2 in three months
 - ➤ Replace all ≈1200 He Kautzky valve poppets during shutdown

Closed Kautzky valve

Broken poppet from B17 spool Kautzky valve

Aborting Beam More Quickly

- Quench Protection Monitor (QPM)
 - > Prior to Dec 03, ran on 60 Hz clock (16.7 ms)
 - · Beam could circulate 100s of turns after quench
 - > Modified in 2004 to "fast-abort" within 900 µs of quench
 - > Tweaked after Nov 21 quench to pull abort within 550 μs
- Voltage-to-Frequency Converters (VFC)
 - > Testing modification to speed measurement of resistive voltage across magnet cell
- New Beam Loss Monitor (BLM) Electronics
 - > Will allow improved performance, greater flexibility
 - Being installed during shutdown

Machine Studies and Maintenance

- Refer to Study Document (Scorecard response)
- Averaged ≈10 hrs / week since last shutdown
- Exploit natural breaks in machine operation
 - > Lost stores, pbar stacks, etc.
- Exploit end-of-store studies
- Focus on specific, well-prepared studies
 - > Be efficient, prevent unnecessary quenches/downtime
 - > Start with proton-only stores before trying in HEP
- If we really need study time to implement something new for HEP, will get the time

Instrumentation

Upgraded BPM Electronics

- Installed house-by-house over few months
 - > In study periods, between HEP stores
- An order of magnitude improvement in proton position measurements and new for pbars
 - \triangleright Position resolutions in the range of ~10-25 μm
- Exploiting improved resolution and reliability
 - > Lattice measurements
 - Identified rolled quads (incorrectly fiducialized at magnet factory)
 - 28 cm β* + optics correction
 - > Orbit motion
 - > TBT coupling measurement/correction during shot-setup

Upgraded BPM Electronics

Ionization Profile Monitor (IPM)

- Installed one detector and partial readout system in Dec 05
- Some problems found and fixed
 - > Poor vacuum
 - > Ground noise
 - High voltage arcing
 - Trigger and data synchronization
- Recorded first data
- Complete detector installation with full readout during ongoing shutdown

IPM Data - Store #4642

Single-turn proton bunch profiles 16 turns before injecting P36

A. Jansson

Optical Transition Radiation Detector (OTR)

- Rad-hard camera images OTR
 - Proton and pbar imaging
- Installed at EO near IPM
- Used for single → few turn injection studies
- 5 μm aluminized mylar foils
- Unique 2-D beam profile detector
 - > Others only 1-D
- High resolution
 - > 130 μ x 170 μ size pixels
- Installed in December 2005

First Results from Tevatron OTR

Single turn measurement of single coalesced proton bunch

False-color OTR Image; 2.7e11 Protons

V. Scarpine

Early Measurements from New Digital Tune Monitor

- Uses stripline as pick-up, FFT on TBT data
- Hope to use without external excitation
- Taken some data, 100 MHz 16-bit ADC still being improved
- Continue development after the shutdown

Proton Bunch Tunes from Digital Tune Monitor

This video clip shows bunch-by-bunch oscillation differences among protons during HEP with (red) and without (blue) excitation.

Magnet Motion

- How do see magnet motion?
 - > Tiltmeters, LVDTs, water levels, surveys
- Observed magnet motion on different time scales
 - > Slow drift over weeks, months
 - Ground motion, etc.
 - Wiggles, jumps over seconds, minutes, hours
 - · Quenches, earthquakes, HVAC, weather, tides
 - Vibrations at few → tens of Hz
 - · Traffic, pumps
- ~µm magnet motion near IPs give ~mm orbit changes in arcs
 - > Readily observable during stores using BPMs

Water Levels See Quench

Sensors on Low-Beta Quads

- Lots of instrumentation on low-beta quads, girders to investigate motion
 - > LVDTs, tiltmeters, temperature, air flow
- Understand more about magnet motion and weather conditions in and out of the collision halls

Sumatra Earthquake 3/28/05

Differential Thermoanemometer

PTC thermistor operates in "self heat" mode, maintaining a temperature of 80C. Air movement imbalances the heating of the two NTC thermistors, giving a direction and relative velocity.

Quad Motion Depends on Hall / Tevatron Differential Pressure

Correlations with Weather

Tevatron Magnet Rolls (March 2006)

TEL Progress

New SEFT Gun

- Beam studies in 2003-05 → need smoother edges, Gaussian too narrow → SEFT gun
- Simulated (below), designed, built and tested in 2005
- Installed in TEL-1 on 12/08/05

TEL BPMs Improved

0.25

0.2

0.15

0.1

Position Diff, Hanning, Horz Scan

→ Up Horz

→ Up Vert

Down Horz

Down Vert

- TEL-1 BPMs have position difference ~1 mm btw p's and e's
- New BPMs designed and built for TEL-2 + narrow band algorithm

TEL-1 BBC studies in 2005-2006

- Over two years '04-'06:
 - > 6 studies=20.5 hrs
- Major results:
 - ➤ Lifetime vs dX, Q_x,y with Gaussian gun
 - Tune spread due to Gaussian gun (did not detect)
 - > dQ=0.004 SEFT gun, easy centering
 - > Great lifetime 130-340 hrs with SEFT gun
 - Simultaneous abort gap cleaning and beambeam compensation possible

Current activities/issues

- TEL-1
 - > PSs, HV PSs, modulator problems
 - Ripple ~2% in HV amplitude
 - > SEFT gun died after Feb 24 quench
 - He-vacuum leak developed in TEL-1 after same quench,, under repair
- TEL-2 tested, being installed in AO
- New MARX HV generator developed but not tested yet
- Comprehensive program of parallel LIFETRAC simulations to be started (BBC in Tev, RHIC and LHC).

Separator Progress

Table of Separator Stations

Horizontal	# modules		Vertical	# modules
B11	2	short arc	B11	1
B17	4		B48	1
			C17	4
C49	1		C49	2
D11	2	long arc	D11	1
D48	1		D17	2
A17	1		A17	1
A49	1		A49	2

New separators being installed in the current shutdown

Total: 26 separator modules + 4 spares

Each station has 2 power supplies, polarity switch, resistors, controls...

Tevatron Electrostatic Separator Components

Looking into a separator

Separator Progress (with TD)

- Conditioned 5 spares up to ±180 kV (72 kV/cm)
 - > Achieved 1-2 sparks/day
 - Previous specs were 1 spark/day @ 150 kV
- Comparing electropolished vs hand-polished stainless steel electrodes
 - > 3 separators have electropolished electrodes
 - > Electropolished show similar spark rate, 2-3× lower dark current
- Testing separator with Ti electrodes now
 - > Warping precludes use in Tevatron useful only for R&D
- Prepared 6 new 180 kV supplies for new separators + spares
- Prepared 2 new 250 kV supplies for teststand use

Separator conditioning plot

Conditioning at higher voltages decreased spark rate (10 kV up \rightarrow spark rate down \sim 10 times)

Expected spark rate at 150 kV for separators conditioned at 180 kV will be less than 1 spark per year or about 3 order of magnitude less in comparing with traditional separator conditioned just at 150 kV.

Shutdown Work

Work Highlights in 2006 Shutdown

- Fix known cold leaks (F4, E2, A3, B4)
- Replace poppets on He Kautzky valves (≈1200)
- Reshim remaining 228 dipoles
- Unroll magnets
 - Quads in D1, A3 > 5 mrad (misfiducialized in factory)
 - Various magnets > 1 mrad since 2004 shutdown
- Replace 3 separators @ A49
- Install new separators @ A17, B48 (1 each)
- Install TEL-2 + repair TEL-1
- Pull cables for new sextupole circuits (chromatic compensation)
- Complete IPM installation
- Install new crystal collimator
- Infrastructure maintenance (feeders, cryo, etc.)

类

Post-Shutdown Tasks

- Recommission with beam…lots of changes
 - > Adjust coupling following the dipole reshimming, unrolls
 - > Implement new helices for injection and HEP
- Adjust IP positions
 - > Already aware of low-β quad + detector motion
- Commission TEL-2
- Continue commissioning of IPM and OTR
- Complete chromatic compensation (split sextupole circuits)
 - > Finish constructing new power supplies
 - Connect new cables to sextupoles, run with existing settings
 - Machine studies to implement lattice corrections
- Commission new BLM electronics
- Conduct machine studies on new working points (1/2, 2/3)
- Deliver lots of luminosity to CDF and DO

类

Summary

- Overall a good year for Tevatron operations
 - > Luminosity increases due to 28 cm β* and Recycler phars
- New instrumentation commissioning completed/underway
 - > BPM electronics, IPM, OTR,...
- Run II Upgrade projects nearing completion
 - Separators, TEL-2, survey/alignment, dipole shimming...
- Attacking reliability issues
 - Repairing known cold leaks, replacing poppets, new BLM electronics
- Preparing for higher intensities + luminosity
 - New sextupole circuits for chromatic compensation
 - > Investigating new working points
 - > Progress on simulations
- Looking to maximize delivered luminosity to CDF & DO